Question$\text{Given:} \\
\text{Final velocity } v_f = 0.635 \, \text{m/s} \\
\text{Initial velocity } v_i = 0 \, \text{m/s} \\
\text{Mass } m = 132 \, \text{g} = 0.132 \, \text{kg} \\
\text{Change in distance } \Delta d = 98 \, \text{cm} = 0.98 \, \text{m} \\
\text{Solve for the force of friction } F_f \text{ in two different ways:} \\
\text{1. Using motion:} \\
\text{Use the kinematic equation:} \\
v_f^2 = v_i^2 + 2a\Delta d \\
\text{Solve for acceleration } a \text{ and use } F = ma \text{ to find } F_f. \\
\text{2. Using work/energy/power:} \\
\text{Use the work-energy principle:} \\
\text{Work done by friction } = \Delta \text{Kinetic Energy} \\
\text{Calculate the change in kinetic energy and equate it to the work done by friction to find } F_f.$
Studdy Solution
Comparing the results:
1. Using motion equations: F_f = 0.02715 N
2. Using work-energy principle: F_f = 0.02715 N
Both methods yield the same result, confirming our calculations.
The friction force is 0.02715 N.
View Full Solution - FreeWas this helpful?