Solve a problem of your own!
Download the Studdy App!

Math

Math Snap

PROBLEM

2. (a) A curve is defined by the function y=x33x5y=x^{3}-3 x-5
Find
i) the gradient of the curve at the point where x=2x=2
ii) the coordinates of the maximum and minimum turning point
(b) Obtain from first principles the derivative of the function y=2x2+4x3y=2 x^{2}+4 x-3
(c) Use integration by substitution to find the given integral 01(3x2+2)4dx\int_{0}^{1}\left(3 x^{2}+2\right)^{4} d x
(d) Use the product rule to find dydx\frac{d y}{d x} given
i. y=(3x2+1)(5t8)y=\left(3 x^{2}+1\right)(5 t-8)
ii. y=t2sinty=t^{2} \sin t

STEP 1

Assumptions
1. The function for the curve is y=x33x5 y = x^3 - 3x - 5 .
2. We need to find the gradient of the curve at x=2 x = 2 .
3. We need to find the coordinates of the maximum and minimum turning points of the curve.
4. For part (b), we need to derive the function y=2x2+4x3 y = 2x^2 + 4x - 3 from first principles.
5. For part (c), we need to use integration by substitution to evaluate the integral 01(3x2+2)4dx \int_{0}^{1} (3x^2 + 2)^4 \, dx .
6. For part (d), we need to use the product rule to find dydx \frac{dy}{dx} for the given functions.

STEP 2

To find the gradient of the curve at x=2 x = 2 , we first need to find the derivative of the function y=x33x5 y = x^3 - 3x - 5 .
dydx=ddx(x33x5) \frac{dy}{dx} = \frac{d}{dx}(x^3 - 3x - 5)

STEP 3

Differentiate the function term by term.
dydx=3x23 \frac{dy}{dx} = 3x^2 - 3

STEP 4

Evaluate the derivative at x=2 x = 2 .
dydxx=2=3(2)23 \left. \frac{dy}{dx} \right|_{x=2} = 3(2)^2 - 3

STEP 5

Calculate the value.
dydxx=2=3(4)3=123=9 \left. \frac{dy}{dx} \right|_{x=2} = 3(4) - 3 = 12 - 3 = 9 The gradient of the curve at x=2 x = 2 is 9.

STEP 6

To find the coordinates of the maximum and minimum turning points, we need to find the critical points by setting the derivative equal to zero.
3x23=0 3x^2 - 3 = 0

STEP 7

Solve for x x .
3x2=3 3x^2 = 3 x2=1 x^2 = 1 x=±1 x = \pm 1

STEP 8

Determine the y-coordinates by substituting x=1 x = 1 and x=1 x = -1 into the original function y=x33x5 y = x^3 - 3x - 5 .
For x=1 x = 1 :
y=133(1)5=135=7 y = 1^3 - 3(1) - 5 = 1 - 3 - 5 = -7 For x=1 x = -1 :
y=(1)33(1)5=1+35=3 y = (-1)^3 - 3(-1) - 5 = -1 + 3 - 5 = -3

STEP 9

The coordinates of the turning points are (1,7) (1, -7) and (1,3) (-1, -3) .

STEP 10

To determine whether these points are maxima or minima, we need to find the second derivative of the function.
d2ydx2=ddx(3x23) \frac{d^2y}{dx^2} = \frac{d}{dx}(3x^2 - 3)

STEP 11

Differentiate the first derivative.
d2ydx2=6x \frac{d^2y}{dx^2} = 6x

STEP 12

Evaluate the second derivative at x=1 x = 1 and x=1 x = -1 .
For x=1 x = 1 :
d2ydx2x=1=6(1)=6 \left. \frac{d^2y}{dx^2} \right|_{x=1} = 6(1) = 6 For x=1 x = -1 :
d2ydx2x=1=6(1)=6 \left. \frac{d^2y}{dx^2} \right|_{x=-1} = 6(-1) = -6

STEP 13

Since d2ydx2 \frac{d^2y}{dx^2} is positive at x=1 x = 1 , the point (1,7) (1, -7) is a minimum. Since d2ydx2 \frac{d^2y}{dx^2} is negative at x=1 x = -1 , the point (1,3) (-1, -3) is a maximum.

STEP 14

For part (b), we need to find the derivative of y=2x2+4x3 y = 2x^2 + 4x - 3 from first principles.
The definition of the derivative from first principles is:
dydx=limh0f(x+h)f(x)h \frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}

STEP 15

Substitute y=2x2+4x3 y = 2x^2 + 4x - 3 into the definition.
f(x+h)=2(x+h)2+4(x+h)3 f(x+h) = 2(x+h)^2 + 4(x+h) - 3

STEP 16

Expand f(x+h) f(x+h) .
f(x+h)=2(x2+2xh+h2)+4x+4h3 f(x+h) = 2(x^2 + 2xh + h^2) + 4x + 4h - 3 f(x+h)=2x2+4xh+2h2+4x+4h3 f(x+h) = 2x^2 + 4xh + 2h^2 + 4x + 4h - 3

STEP 17

Subtract f(x) f(x) from f(x+h) f(x+h) .
f(x+h)f(x)=(2x2+4xh+2h2+4x+4h3)(2x2+4x3) f(x+h) - f(x) = (2x^2 + 4xh + 2h^2 + 4x + 4h - 3) - (2x^2 + 4x - 3) f(x+h)f(x)=4xh+2h2+4h f(x+h) - f(x) = 4xh + 2h^2 + 4h

STEP 18

Divide by h h .
f(x+h)f(x)h=4xh+2h2+4hh=4x+2h+4 \frac{f(x+h) - f(x)}{h} = \frac{4xh + 2h^2 + 4h}{h} = 4x + 2h + 4

STEP 19

Take the limit as h h approaches 0.
limh0(4x+2h+4)=4x+4 \lim_{h \to 0} (4x + 2h + 4) = 4x + 4 The derivative of y=2x2+4x3 y = 2x^2 + 4x - 3 is dydx=4x+4 \frac{dy}{dx} = 4x + 4 .

STEP 20

For part (c), we need to use integration by substitution to evaluate 01(3x2+2)4dx \int_{0}^{1} (3x^2 + 2)^4 \, dx .
Let u=3x2+2 u = 3x^2 + 2 .

STEP 21

Differentiate u u with respect to x x .
dudx=6x \frac{du}{dx} = 6x du=6xdx du = 6x \, dx

STEP 22

Rewrite the integral in terms of u u .
01(3x2+2)4dx=01u4du6x \int_{0}^{1} (3x^2 + 2)^4 \, dx = \int_{0}^{1} u^4 \cdot \frac{du}{6x}

STEP 23

Since u=3x2+2 u = 3x^2 + 2 , when x=0 x = 0 , u=2 u = 2 , and when x=1 x = 1 , u=5 u = 5 .
25u4du6x \int_{2}^{5} u^4 \cdot \frac{du}{6x}

STEP 24

Since du=6xdx du = 6x \, dx , the integral simplifies to:
25u46du \int_{2}^{5} \frac{u^4}{6} \, du

STEP 25

Factor out the constant 16 \frac{1}{6} .
1625u4du \frac{1}{6} \int_{2}^{5} u^4 \, du

STEP 26

Integrate u4 u^4 .
16[u55]25 \frac{1}{6} \left[ \frac{u^5}{5} \right]_{2}^{5}

STEP 27

Evaluate the definite integral.
16(555255) \frac{1}{6} \left( \frac{5^5}{5} - \frac{2^5}{5} \right) 16(625325) \frac{1}{6} \left( 625 - \frac{32}{5} \right)

STEP 28

Simplify the expression.
16(6256.4) \frac{1}{6} \left( 625 - 6.4 \right) 16618.6=103.1 \frac{1}{6} \cdot 618.6 = 103.1 The value of the integral is 103.1 103.1 .

STEP 29

For part (d), we need to use the product rule to find dydx \frac{dy}{dx} for the given functions.
i. y=(3x2+1)(5t8) y = (3x^2 + 1)(5t - 8)
The product rule states:
ddx[uv]=uv+uv \frac{d}{dx} [u \cdot v] = u' \cdot v + u \cdot v' Let u=3x2+1 u = 3x^2 + 1 and v=5t8 v = 5t - 8 .

STEP 30

Differentiate u u and v v .
u=6x u' = 6x v=5 v' = 5

STEP 31

Apply the product rule.
dydx=(6x)(5t8)+(3x2+1)(5) \frac{dy}{dx} = (6x)(5t - 8) + (3x^2 + 1)(5) dydx=30xt48x+15x2+5 \frac{dy}{dx} = 30xt - 48x + 15x^2 + 5 ii. y=t2sint y = t^2 \sin t
Let u=t2 u = t^2 and v=sint v = \sin t .

STEP 32

Differentiate u u and v v .
u=2t u' = 2t v=cost v' = \cos t

SOLUTION

Apply the product rule.
dydx=(2t)(sint)+(t2)(cost) \frac{dy}{dx} = (2t)(\sin t) + (t^2)(\cos t) dydx=2tsint+t2cost \frac{dy}{dx} = 2t \sin t + t^2 \cos t

Was this helpful?
banner

Start understanding anything

Get started now for free.

OverviewParentsContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord