Math  /  Calculus

QuestionAttempt All Questions
1. Dichromate ion (Cr2O72)\left(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right) in acidic solution is a good oxidizing agent. Which of the following oxidations can be accomplished with dichromate ion in acidic solution? Explain a. Sn2+(aq)\mathrm{Sn}^{2+}(\mathrm{aq}) to Sn4+(aq)\mathrm{Sn}^{4+}(\mathrm{aq}) b. Ag(s)\mathrm{Ag}(\mathrm{s}) to Ag+(aq)\mathrm{Ag}^{+}(\mathrm{aq})
2. For each of the following cell diagrams a. Pt(s)Fe2+(aq),Fe3+(aq)Ag+(aq)Ag(s)\operatorname{Pt}(\mathrm{s})\left|\mathrm{Fe}^{2+}(\mathrm{aq}), \mathrm{Fe}^{3+}(\mathrm{aq}) \|\left|\mathrm{Ag}^{+}(\mathrm{aq})\right| \mathrm{Ag}(\mathrm{s})\right. b. Pt(s)Mn2+(aq),MnO4(aq)Cu2+(aq)Cu(s)\mathrm{Pt}(\mathrm{s})\left|\mathrm{Mn}^{2+}(\mathrm{aq}), \mathrm{MnO}_{4}^{-}(\mathrm{aq})\right|\left|\mathrm{Cu}^{2+}(\mathrm{aq})\right| \mathrm{Cu}(\mathrm{s}) i. calculate the Ecell oE_{\text {cell }}^{o} ii. what is the change in Gibbs free energy? iii. is the cell reaction spontaneous or nonspontaneous? Explain.
3. Will the following reaction Cr2O72(aq)+14H++6Ag( s)2Cr3+(aq)+6Ag+(aq)+7H2O(l)Ecell =0.023 V\mathrm{Cr}_{2} \mathrm{O}_{7}^{2 \cdot}(\mathrm{aq})+14 \mathrm{H}^{+}+6 \mathrm{Ag}(\mathrm{~s}) \longrightarrow 2 \mathrm{Cr}^{3+}(\mathrm{aq})+6 \mathrm{Ag}^{+}(\mathrm{aq})+7 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) E_{\text {cell }}=-0.023 \mathrm{~V} be spontaneous if [Cr2O72]=[Ag+]=0.675M,[Cr3+]=0.6M\left[\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}\right]=[\mathrm{Ag}+]=0.675 \mathrm{M},\left[\mathrm{Cr}^{3+}\right]=0.6 \mathrm{M} and pH=2\mathrm{pH}=2 ? Explain.
4. Define the following terms a) Oxidation b) Oxidizing agent c) Salt bridge d) Liquid junction e) Standard electrode potential

Studdy Solution

STEP 1

1. The dichromate ion Cr2O72\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} is a strong oxidizing agent in acidic solutions.
2. Standard electrode potentials (EE^\circ) are available for the relevant half-reactions.
3. Gibbs free energy change (ΔG\Delta G) can be calculated using the formula ΔG=nFEcello\Delta G = -nFE_{\text{cell}}^{o}.
4. The Nernst equation can be used to determine cell potential under non-standard conditions.
5. Definitions are based on standard chemistry terminology.

STEP 2

1. Analyze the oxidation reactions with dichromate ion.
2. Calculate EcelloE_{\text{cell}}^{o} for given cell diagrams.
3. Determine Gibbs free energy change and spontaneity.
4. Evaluate the spontaneity of the given reaction under specified conditions.
5. Define the given chemistry terms.

STEP 3

Analyze the oxidation reactions with dichromate ion:
a. Check if Sn2+(aq)\mathrm{Sn}^{2+}(\mathrm{aq}) can be oxidized to Sn4+(aq)\mathrm{Sn}^{4+}(\mathrm{aq}) using dichromate ion. - The standard reduction potential for Sn4+/Sn2+\mathrm{Sn}^{4+}/\mathrm{Sn}^{2+} is E=+0.15VE^\circ = +0.15 \, \text{V}. - The standard reduction potential for Cr2O72/Cr3+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}/\mathrm{Cr}^{3+} is E=+1.33VE^\circ = +1.33 \, \text{V}. - Since EE^\circ for dichromate is higher, it can oxidize Sn2+\mathrm{Sn}^{2+}.
b. Check if Ag(s)\mathrm{Ag}(\mathrm{s}) can be oxidized to Ag+(aq)\mathrm{Ag}^{+}(\mathrm{aq}). - The standard reduction potential for Ag+/Ag\mathrm{Ag}^{+}/\mathrm{Ag} is E=+0.80VE^\circ = +0.80 \, \text{V}. - Since EE^\circ for dichromate is higher, it can oxidize Ag\mathrm{Ag}.

STEP 4

Calculate EcelloE_{\text{cell}}^{o} for given cell diagrams:
a. For Pt(s)Fe2+(aq),Fe3+(aq)Ag+(aq)Ag(s)\operatorname{Pt}(\mathrm{s})\left|\mathrm{Fe}^{2+}(\mathrm{aq}), \mathrm{Fe}^{3+}(\mathrm{aq}) \|\left|\mathrm{Ag}^{+}(\mathrm{aq})\right| \mathrm{Ag}(\mathrm{s})\right.: - Ered(Fe3+/Fe2+)=+0.77VE^\circ_{\text{red}}(\mathrm{Fe}^{3+}/\mathrm{Fe}^{2+}) = +0.77 \, \text{V} - Ered(Ag+/Ag)=+0.80VE^\circ_{\text{red}}(\mathrm{Ag}^{+}/\mathrm{Ag}) = +0.80 \, \text{V} - Ecello=EcathodeEanode=0.80V0.77V=0.03VE_{\text{cell}}^{o} = E^\circ_{\text{cathode}} - E^\circ_{\text{anode}} = 0.80 \, \text{V} - 0.77 \, \text{V} = 0.03 \, \text{V}
b. For Pt(s)Mn2+(aq),MnO4(aq)Cu2+(aq)Cu(s)\mathrm{Pt}(\mathrm{s})\left|\mathrm{Mn}^{2+}(\mathrm{aq}), \mathrm{MnO}_{4}^{-}(\mathrm{aq})\right|\left|\mathrm{Cu}^{2+}(\mathrm{aq})\right| \mathrm{Cu}(\mathrm{s}): - Ered(MnO4/Mn2+)=+1.51VE^\circ_{\text{red}}(\mathrm{MnO}_{4}^{-}/\mathrm{Mn}^{2+}) = +1.51 \, \text{V} - Ered(Cu2+/Cu)=+0.34VE^\circ_{\text{red}}(\mathrm{Cu}^{2+}/\mathrm{Cu}) = +0.34 \, \text{V} - Ecello=0.34V1.51V=1.17VE_{\text{cell}}^{o} = 0.34 \, \text{V} - 1.51 \, \text{V} = -1.17 \, \text{V}

STEP 5

Determine Gibbs free energy change and spontaneity:
a. For cell diagram (a): - ΔG=nFEcello\Delta G = -nFE_{\text{cell}}^{o} - n=1n = 1 (for Fe3+/Fe2+\mathrm{Fe}^{3+}/\mathrm{Fe}^{2+} and Ag+/Ag\mathrm{Ag}^{+}/\mathrm{Ag}) - ΔG=(1)(96485C/mol)(0.03V)=2894.55J/mol\Delta G = -(1)(96485 \, \text{C/mol})(0.03 \, \text{V}) = -2894.55 \, \text{J/mol} - Reaction is spontaneous as ΔG<0\Delta G < 0.
b. For cell diagram (b): - ΔG=(2)(96485C/mol)(1.17V)=226,902.3J/mol\Delta G = -(2)(96485 \, \text{C/mol})(-1.17 \, \text{V}) = 226,902.3 \, \text{J/mol} - Reaction is nonspontaneous as ΔG>0\Delta G > 0.

STEP 6

Evaluate the spontaneity of the given reaction under specified conditions:
- Use the Nernst equation to find EcellE_{\text{cell}} under non-standard conditions. - Ecell=EcellRTnFlnQE_{\text{cell}} = E^\circ_{\text{cell}} - \frac{RT}{nF} \ln Q - Q=[Cr3+]2[Ag+]6[Cr2O72][H+]14Q = \frac{[\mathrm{Cr}^{3+}]^2 [\mathrm{Ag}^{+}]^6}{[\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}][\mathrm{H}^{+}]^{14}} - Substitute values: Q=(0.6)2(0.675)6(0.675)(102)14Q = \frac{(0.6)^2 (0.675)^6}{(0.675)(10^{-2})^{14}} - Calculate EcellE_{\text{cell}} and determine if the reaction is spontaneous (Ecell>0E_{\text{cell}} > 0).

STEP 7

Define the given chemistry terms:
a) Oxidation: The process of losing electrons in a chemical reaction. b) Oxidizing agent: A substance that gains electrons and is reduced in a chemical reaction. c) Salt bridge: A device used in an electrochemical cell to maintain electrical neutrality by allowing the flow of ions. d) Liquid junction: A boundary between two different electrolyte solutions in an electrochemical cell. e) Standard electrode potential: The measure of the individual potential of a reversible electrode at standard state, which is 1M1 \, \text{M} concentration, 1atm1 \, \text{atm} pressure, and 25C25^\circ \text{C}.

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord