Solve a problem of your own!
Download the Studdy App!

Math

Math Snap

PROBLEM

Find all values of aa where limxaf(x)\lim_{x \to a} f(x) exists for the piecewise function f(x)f(x) defined above.

STEP 1

Assumptions1. The function f(x)f(x) is defined piecewise for x0x \neq0 as follows - f(x)=4+xf(x) =4+x for x<x<-
- f(x)=3xf(x) = \frac{3}{}x for 0<x0<x\leq
- f(x)=3+x1xf(x) =3+x-\frac{1}{}x^{} for x>x>
. We are asked to find all values of aa at which the limit of f(x)f(x) as xx approaches aa exists.

STEP 2

For a limit to exist at a certain point aa, the left-hand limit and the right-hand limit at that point must be equal. That is, limxaf(x)=limxa+f(x)\lim_{x \rightarrow a^-} f(x) = \lim_{x \rightarrow a^+} f(x).

STEP 3

Let's first consider the points where the definition of the function changes, namely x=2x=-2, x=0x=0, and x=2x=2.

STEP 4

For x=2x=-2, we have to check if limx2f(x)=limx2+f(x)\lim_{x \rightarrow -2^-} f(x) = \lim_{x \rightarrow -2^+} f(x).

STEP 5

Calculate the left-hand limit at x=2x=-2 using the definition of f(x)f(x) for x<2x<-2.
limx2f(x)=limx2(4+x)\lim_{x \rightarrow -2^-} f(x) = \lim_{x \rightarrow -2^-} (4+x)

STEP 6

Calculate the right-hand limit at x=2x=-2 using the definition of f(x)f(x) for 0<x20<x\leq2.
limx2+f(x)=limx2+32x\lim_{x \rightarrow -2^+} f(x) = \lim_{x \rightarrow -2^+} \frac{3}{2}x

STEP 7

Notice that the right-hand limit at x=2x=-2 does not exist because the function is not defined for x=2x=-2 in the second piece. Therefore, the limit at x=2x=-2 does not exist.

STEP 8

Now, let's consider x=0x=0. We have to check if limx0f(x)=limx0+f(x)\lim_{x \rightarrow0^-} f(x) = \lim_{x \rightarrow0^+} f(x).

STEP 9

Calculate the left-hand limit at x=x= using the definition of f(x)f(x) for x<2x<-2.
limxf(x)=limx(4+x)\lim_{x \rightarrow^-} f(x) = \lim_{x \rightarrow^-} (4+x)

STEP 10

Calculate the right-hand limit at x=0x=0 using the definition of f(x)f(x) for 0<x20<x\leq2.
limx0+f(x)=limx0+32x\lim_{x \rightarrow0^+} f(x) = \lim_{x \rightarrow0^+} \frac{3}{2}x

STEP 11

Notice that the left-hand limit at x=0x=0 does not exist because the function is not defined for x=0x=0 in the first piece. Therefore, the limit at x=0x=0 does not exist.

STEP 12

Now, let's consider x=2x=2. We have to check if limx2f(x)=limx2+f(x)\lim_{x \rightarrow2^-} f(x) = \lim_{x \rightarrow2^+} f(x).

STEP 13

Calculate the left-hand limit at x=2x=2 using the definition of f(x)f(x) for 0<x20<x\leq2.
limx2f(x)=limx232x\lim_{x \rightarrow2^-} f(x) = \lim_{x \rightarrow2^-} \frac{3}{2}x

STEP 14

Calculate the right-hand limit at x=2x=2 using the definition of f(x)f(x) for x>2x>2.
limx2+f(x)=limx2+(3+x2x2)\lim_{x \rightarrow2^+} f(x) = \lim_{x \rightarrow2^+} (3+x-\frac{}{2}x^{2})

STEP 15

Calculate the values of the left-hand and right-hand limits at x=2x=2.
limx2f(x)=3\lim_{x \rightarrow2^-} f(x) =3limx2+f(x)=3\lim_{x \rightarrow2^+} f(x) =3

STEP 16

Since the left-hand limit equals the right-hand limit at x=2x=2, the limit at x=2x=2 exists.

STEP 17

For all other values of xx not equal to 2-2, 00, or 22, the function is continuous and therefore the limit exists.

STEP 18

Therefore, the values of aa at which limxaf(x)\lim_{x \rightarrow a} f(x) exists are all xx such that x2,0x \neq -2,0, and the limit exists at x=2x=2.

SOLUTION

Expressing this in interval notation, the values of aa at which limxaf(x)\lim_{x \rightarrow a} f(x) exists are (,)(,)(,](,+)(-\infty, -) \cup (-,) \cup (,] \cup (, +\infty).
The values of aa at which the limit of f(x)f(x) as xx approaches aa exists are (,)(,)(,](,+)(-\infty, -) \cup (-,) \cup (,] \cup (, +\infty).

Was this helpful?
banner

Start understanding anything

Get started now for free.

OverviewParentsContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord