Math  /  Algebra

Question Let A=[004040206]\text { Let } A=\left[\begin{array}{ccc} 0 & 0 & 4 \\ 0 & -4 & 0 \\ -2 & 0 & -6 \end{array}\right] (a) Determine the eigenvalues λ1\lambda_{1} and λ2\lambda_{2} of AA where λ1<λ2\lambda_{1}<\lambda_{2}. λ1=\lambda_{1}= \square λ2=\lambda_{2}= \square (b) Determine the algebraic multiplicity mm of each of the eigenvalues in part (a). m(λ1)=m\left(\lambda_{1}\right)= \square m(λ2)=m\left(\lambda_{2}\right)= \square

Studdy Solution

STEP 1

1. The matrix A A is a 3×3 3 \times 3 matrix.
2. Eigenvalues are found by solving the characteristic polynomial det(AλI)=0 \det(A - \lambda I) = 0 .
3. The algebraic multiplicity of an eigenvalue is the number of times it appears as a root of the characteristic polynomial.

STEP 2

1. Write the characteristic equation.
2. Calculate the determinant of AλI A - \lambda I .
3. Solve the characteristic polynomial for eigenvalues.
4. Determine the algebraic multiplicity of each eigenvalue.

STEP 3

Write the characteristic equation for matrix A A :
The characteristic equation is given by:
det(AλI)=0 \det(A - \lambda I) = 0
where I I is the identity matrix of the same size as A A .

STEP 4

Calculate the determinant of AλI A - \lambda I :
First, construct AλI A - \lambda I :
AλI=[0λ0404λ0206λ]=[λ0404λ0206λ] A - \lambda I = \begin{bmatrix} 0 - \lambda & 0 & 4 \\ 0 & -4 - \lambda & 0 \\ -2 & 0 & -6 - \lambda \end{bmatrix} = \begin{bmatrix} -\lambda & 0 & 4 \\ 0 & -4 - \lambda & 0 \\ -2 & 0 & -6 - \lambda \end{bmatrix}
Now, compute the determinant:
det(AλI)=λ0404λ0206λ \det(A - \lambda I) = \begin{vmatrix} -\lambda & 0 & 4 \\ 0 & -4 - \lambda & 0 \\ -2 & 0 & -6 - \lambda \end{vmatrix}
Using the cofactor expansion along the second row:
=(4λ)λ426λ = (-4 - \lambda) \begin{vmatrix} -\lambda & 4 \\ -2 & -6 - \lambda \end{vmatrix}
Calculate the 2×2 2 \times 2 determinant:
=(4λ)((λ)(6λ)(4)(2)) = (-4 - \lambda) ((-\lambda)(-6 - \lambda) - (4)(-2))
=(4λ)(λ2+6λ+8) = (-4 - \lambda) (\lambda^2 + 6\lambda + 8)

STEP 5

Simplify and solve the characteristic polynomial:
det(AλI)=(4λ)(λ2+6λ+8)=0 \det(A - \lambda I) = (-4 - \lambda) (\lambda^2 + 6\lambda + 8) = 0
This gives us two factors to solve:
1. 4λ=0 -4 - \lambda = 0 which gives λ=4 \lambda = -4 .
2. λ2+6λ+8=0 \lambda^2 + 6\lambda + 8 = 0 .
Solve the quadratic equation using the quadratic formula:
λ=b±b24ac2a \lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
where a=1,b=6,c=8 a = 1, b = 6, c = 8 .
λ=6±6241821 \lambda = \frac{-6 \pm \sqrt{6^2 - 4 \cdot 1 \cdot 8}}{2 \cdot 1}
λ=6±36322 \lambda = \frac{-6 \pm \sqrt{36 - 32}}{2}
λ=6±42 \lambda = \frac{-6 \pm \sqrt{4}}{2}
λ=6±22 \lambda = \frac{-6 \pm 2}{2}
λ=2orλ=4 \lambda = -2 \quad \text{or} \quad \lambda = -4

STEP 6

Determine the algebraic multiplicity of each eigenvalue:
The eigenvalues are λ1=4 \lambda_1 = -4 and λ2=2 \lambda_2 = -2 .
From the characteristic polynomial:
1. λ1=4 \lambda_1 = -4 appears twice (once from the linear factor and once from the quadratic factor).
2. λ2=2 \lambda_2 = -2 appears once.

Thus, the algebraic multiplicities are:
m(λ1)=2 m(\lambda_1) = 2 m(λ2)=1 m(\lambda_2) = 1
The eigenvalues and their multiplicities are: λ1=4,m(λ1)=2\lambda_1 = -4, \quad m(\lambda_1) = 2 λ2=2,m(λ2)=1\lambda_2 = -2, \quad m(\lambda_2) = 1

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord