Solve a problem of your own!
Download the Studdy App!

Math

Math Snap

PROBLEM

Question 1. Assume that the following data set {(t,xt)}\left\{\left(t, x_{t}\right)\right\} is from a stationary AR(1)\operatorname{AR}(1) time series with ϕ=0.78\phi=0.78.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|} \hlinett & 1920 & 1925 & 1930 & 1935 & 1940 & 1945 & 1950 & 1955 \\ \hlinextx_{t} & 0.112 & 0.88 & 0.68 & 0.53 & ?? & 0.32 & ?? & ?? \\ \hline \end{tabular}
a) Use the best linear predictor to estimate x1940x_{1940} using x1935x_{1935}.
b) Use the best linear predictor to estimate x1940x_{1940} using x1930x_{1930} and x1935x_{1935}.
c) Use the best linear predictor to estimate x1940x_{1940} using x1935x_{1935} and x1945x_{1945}.
d) Use the best linear predictor to estimate x1950x_{1950} using x1945x_{1945}.
e) Use the best linear predictor to estimate x1955x_{1955}.

STEP 1

1. The data set is from a stationary AR(1) time series with ϕ=0.78\phi = 0.78.
2. The AR(1) model is given by xt=ϕxt1+ϵtx_t = \phi x_{t-1} + \epsilon_t, where ϵt\epsilon_t is a white noise error term.
3. The best linear predictor for an AR(1) process is based on the previous value(s) and the parameter ϕ\phi.

STEP 2

1. Estimate x1940x_{1940} using x1935x_{1935}.
2. Estimate x1940x_{1940} using x1930x_{1930} and x1935x_{1935}.
3. Estimate x1940x_{1940} using x1935x_{1935} and x1945x_{1945}.
4. Estimate x1950x_{1950} using x1945x_{1945}.
5. Estimate x1955x_{1955}.

STEP 3

Use the AR(1) model to estimate x1940x_{1940} using x1935x_{1935}.
The formula is:
x1940=ϕx1935 x_{1940} = \phi \cdot x_{1935} Given:
x1935=0.53 x_{1935} = 0.53 Calculate:
x1940=0.78×0.53=0.4134 x_{1940} = 0.78 \times 0.53 = 0.4134

STEP 4

Use the AR(1) model to estimate x1940x_{1940} using x1930x_{1930} and x1935x_{1935}.
The formula is:
x1940=ϕ2x1930+ϕx1935 x_{1940} = \phi^2 \cdot x_{1930} + \phi \cdot x_{1935} Given:
x1930=0.68,x1935=0.53 x_{1930} = 0.68, \quad x_{1935} = 0.53 Calculate:
x1940=0.782×0.68+0.78×0.53 x_{1940} = 0.78^2 \times 0.68 + 0.78 \times 0.53 x1940=0.6084×0.68+0.4134 x_{1940} = 0.6084 \times 0.68 + 0.4134 x1940=0.4137+0.4134=0.8271 x_{1940} = 0.4137 + 0.4134 = 0.8271

STEP 5

Use the AR(1) model to estimate x1940x_{1940} using x1935x_{1935} and x1945x_{1945}.
The formula is:
x1940=ϕx1935+ϕ2x1945 x_{1940} = \phi \cdot x_{1935} + \phi^2 \cdot x_{1945} Given:
x1935=0.53,x1945=0.32 x_{1935} = 0.53, \quad x_{1945} = 0.32 Calculate:
x1940=0.78×0.53+0.782×0.32 x_{1940} = 0.78 \times 0.53 + 0.78^2 \times 0.32 x1940=0.4134+0.6084×0.32 x_{1940} = 0.4134 + 0.6084 \times 0.32 x1940=0.4134+0.1947=0.6081 x_{1940} = 0.4134 + 0.1947 = 0.6081

STEP 6

Use the AR(1) model to estimate x1950x_{1950} using x1945x_{1945}.
The formula is:
x1950=ϕx1945 x_{1950} = \phi \cdot x_{1945} Given:
x1945=0.32 x_{1945} = 0.32 Calculate:
x1950=0.78×0.32=0.2496 x_{1950} = 0.78 \times 0.32 = 0.2496

SOLUTION

Use the AR(1) model to estimate x1955x_{1955}.
Since x1955x_{1955} is three steps ahead, we use:
x1955=ϕ3x1945 x_{1955} = \phi^3 \cdot x_{1945} Given:
x1945=0.32 x_{1945} = 0.32 Calculate:
x1955=0.783×0.32 x_{1955} = 0.78^3 \times 0.32 x1955=0.474552×0.32=0.15105664 x_{1955} = 0.474552 \times 0.32 = 0.15105664 The estimated values are:
a) x1940=0.4134x_{1940} = 0.4134
b) x1940=0.8271x_{1940} = 0.8271
c) x1940=0.6081x_{1940} = 0.6081
d) x1950=0.2496x_{1950} = 0.2496
e) x1955=0.1511x_{1955} = 0.1511

Was this helpful?
banner

Start understanding anything

Get started now for free.

OverviewParentsContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord