Math  /  Data & Statistics

QuestionQuestion 1. Assume that the following data set {(t,xt)}\left\{\left(t, x_{t}\right)\right\} is from a stationary AR(1)\operatorname{AR}(1) time series with ϕ=0.78\phi=0.78. \begin{tabular}{|c|c|c|c|c|c|c|c|c|} \hlinett & 1920 & 1925 & 1930 & 1935 & 1940 & 1945 & 1950 & 1955 \\ \hlinextx_{t} & 0.112 & 0.88 & 0.68 & 0.53 & ?? & 0.32 & ?? & ?? \\ \hline \end{tabular} a) Use the best linear predictor to estimate x1940x_{1940} using x1935x_{1935}. b) Use the best linear predictor to estimate x1940x_{1940} using x1930x_{1930} and x1935x_{1935}. c) Use the best linear predictor to estimate x1940x_{1940} using x1935x_{1935} and x1945x_{1945}. d) Use the best linear predictor to estimate x1950x_{1950} using x1945x_{1945}. e) Use the best linear predictor to estimate x1955x_{1955}.

Studdy Solution

STEP 1

1. The data set is from a stationary AR(1) time series with ϕ=0.78\phi = 0.78.
2. The AR(1) model is given by xt=ϕxt1+ϵtx_t = \phi x_{t-1} + \epsilon_t, where ϵt\epsilon_t is a white noise error term.
3. The best linear predictor for an AR(1) process is based on the previous value(s) and the parameter ϕ\phi.

STEP 2

1. Estimate x1940x_{1940} using x1935x_{1935}.
2. Estimate x1940x_{1940} using x1930x_{1930} and x1935x_{1935}.
3. Estimate x1940x_{1940} using x1935x_{1935} and x1945x_{1945}.
4. Estimate x1950x_{1950} using x1945x_{1945}.
5. Estimate x1955x_{1955}.

STEP 3

Use the AR(1) model to estimate x1940x_{1940} using x1935x_{1935}.
The formula is: x1940=ϕx1935 x_{1940} = \phi \cdot x_{1935}
Given: x1935=0.53 x_{1935} = 0.53
Calculate: x1940=0.78×0.53=0.4134 x_{1940} = 0.78 \times 0.53 = 0.4134

STEP 4

Use the AR(1) model to estimate x1940x_{1940} using x1930x_{1930} and x1935x_{1935}.
The formula is: x1940=ϕ2x1930+ϕx1935 x_{1940} = \phi^2 \cdot x_{1930} + \phi \cdot x_{1935}
Given: x1930=0.68,x1935=0.53 x_{1930} = 0.68, \quad x_{1935} = 0.53
Calculate: x1940=0.782×0.68+0.78×0.53 x_{1940} = 0.78^2 \times 0.68 + 0.78 \times 0.53 x1940=0.6084×0.68+0.4134 x_{1940} = 0.6084 \times 0.68 + 0.4134 x1940=0.4137+0.4134=0.8271 x_{1940} = 0.4137 + 0.4134 = 0.8271

STEP 5

Use the AR(1) model to estimate x1940x_{1940} using x1935x_{1935} and x1945x_{1945}.
The formula is: x1940=ϕx1935+ϕ2x1945 x_{1940} = \phi \cdot x_{1935} + \phi^2 \cdot x_{1945}
Given: x1935=0.53,x1945=0.32 x_{1935} = 0.53, \quad x_{1945} = 0.32
Calculate: x1940=0.78×0.53+0.782×0.32 x_{1940} = 0.78 \times 0.53 + 0.78^2 \times 0.32 x1940=0.4134+0.6084×0.32 x_{1940} = 0.4134 + 0.6084 \times 0.32 x1940=0.4134+0.1947=0.6081 x_{1940} = 0.4134 + 0.1947 = 0.6081

STEP 6

Use the AR(1) model to estimate x1950x_{1950} using x1945x_{1945}.
The formula is: x1950=ϕx1945 x_{1950} = \phi \cdot x_{1945}
Given: x1945=0.32 x_{1945} = 0.32
Calculate: x1950=0.78×0.32=0.2496 x_{1950} = 0.78 \times 0.32 = 0.2496

STEP 7

Use the AR(1) model to estimate x1955x_{1955}.
Since x1955x_{1955} is three steps ahead, we use: x1955=ϕ3x1945 x_{1955} = \phi^3 \cdot x_{1945}
Given: x1945=0.32 x_{1945} = 0.32
Calculate: x1955=0.783×0.32 x_{1955} = 0.78^3 \times 0.32 x1955=0.474552×0.32=0.15105664 x_{1955} = 0.474552 \times 0.32 = 0.15105664
The estimated values are: a) x1940=0.4134x_{1940} = 0.4134 b) x1940=0.8271x_{1940} = 0.8271 c) x1940=0.6081x_{1940} = 0.6081 d) x1950=0.2496x_{1950} = 0.2496 e) x1955=0.1511x_{1955} = 0.1511

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord