Solve a problem of your own!
Download the Studdy App!

Math

Math Snap

PROBLEM

The table lists the average tuition and fees at private colleges and universities for selected years.
\begin{tabular}{|c|c|c|c|c|c|} \hline Year & 1985 & 1990 & 1995 & 2000 & 2008 \\ \hline \begin{tabular}{c} Tuition and \\ Fees \\ (in dollars) \end{tabular} & 5328 & 9369 & 12,336 & 16,154 & 25,111 \\
\hline
\end{tabular}
(a) Find the equation of the least-squares regression line that models the data.
yy \approx \square
(Type the slope as a decimal rounded to three decimal places. Round the yy-intercept to the nearest integer.)

STEP 1

1. The independent variable x x represents the year.
2. The dependent variable y y represents the tuition and fees in dollars.
3. We will use the least-squares method to find the regression line.
4. The years will be transformed into a form suitable for regression analysis, typically by setting the first year as x=0 x = 0 .

STEP 2

1. Transform the year data for regression analysis.
2. Calculate the necessary sums for the least-squares formulas.
3. Compute the slope m m of the regression line.
4. Compute the y-intercept b b of the regression line.
5. Write the equation of the regression line.

STEP 3

Transform the year data by setting 1985 as x=0 x = 0 . The transformed years are:
\begin{align} 1985 & \rightarrow 0 \\ 1990 & \rightarrow 5 \\ 1995 & \rightarrow 10 \\ 2000 & \rightarrow 15 \\ 2008 & \rightarrow 23 \\ \end{align}

STEP 4

Calculate the necessary sums:
\begin{align} \sum x &= 0 + 5 + 10 + 15 + 23 = 53 \\ \sum y &= 5328 + 9369 + 12336 + 16154 + 25111 = 68298 \\ \sum xy &= (0 \times 5328) + (5 \times 9369) + (10 \times 12336) + (15 \times 16154) + (23 \times 25111) = 100,7853 \\ \sum x^2 &= 0^2 + 5^2 + 10^2 + 15^2 + 23^2 = 899 \\ \end{align}

STEP 5

Compute the slope m m using the formula:
m=n(xy)(x)(y)n(x2)(x)2m = \frac{n(\sum xy) - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2} where n=5 n = 5 .
m=5(1007853)(53)(68298)5(899)(53)2=5039265362979444952809=14094711686835.993m = \frac{5(1007853) - (53)(68298)}{5(899) - (53)^2} = \frac{5039265 - 3629794}{4495 - 2809} = \frac{1409471}{1686} \approx 835.993

STEP 6

Compute the y-intercept b b using the formula:
b=ym(x)nb = \frac{\sum y - m(\sum x)}{n} b=68298835.993×535=6829844207.62954818.874b = \frac{68298 - 835.993 \times 53}{5} = \frac{68298 - 44207.629}{5} \approx 4818.874 Round b b to the nearest integer: b4819 b \approx 4819 .

SOLUTION

Write the equation of the regression line:
y835.993x+4819y \approx 835.993x + 4819 The equation of the least-squares regression line is:
y835.993x+4819 y \approx 835.993x + 4819

Was this helpful?
banner

Start understanding anything

Get started now for free.

OverviewParentsContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord