Function

Problem 10201

Determine if the car is moving left or right at t=8t=8 for the function s(t)=4t310t2+t4s(t)=-4 t^{3}-10 t^{2}+t-4.

See Solution

Problem 10202

Find the acceleration function a(t)a(t) for the particle with position s(t)=3t2t+1s(t)=-3t^{2}-t+1 (in meters) at time tt.

See Solution

Problem 10203

Find the acceleration of the particle at t=3t=3 seconds for the function s(t)=t33t28t+1s(t)=t^{3}-3 t^{2}-8 t+1. Answer in ft/s2\mathrm{ft} / \mathrm{s}^{2}.

See Solution

Problem 10204

Determine if the train, described by s(t)=t42t35t2+3s(t)=t^{4}-2 t^{3}-5 t^{2}+3, is speeding up or slowing down at t=2t=2 seconds.

See Solution

Problem 10205

Find the interval(s) where the hummingbird slows down for s(t)=t3+9t224t4s(t)=-t^{3}+9 t^{2}-24 t-4, t0t \geq 0.

See Solution

Problem 10206

Graph the function f(x)=x+44f(x)=|x+4|-4 and identify its domain and range.

See Solution

Problem 10207

A potato is shot up with a speed of 34ft/s34 \mathrm{ft/s} from a 15 ft tall building. Find how long it's in the air using s(t)=16t2+34t+15s(t)=-16 t^{2}+34 t+15.

See Solution

Problem 10208

Question: Poisson Distribution
Let X1,X2,,XnX_{1}, X_{2}, \ldots, X_{n} be independent and identically distributed (i.i.d.) random variables, where each XiX_{i} follows a Poisson distribution with parameter λ>0\lambda>0. The probability mass function (PMF) for a Poisson random variable is given by:
Likelihood Estimation fo fX(x;λ)=λxeλx!,x=0,1,2,f_{X}(x ; \lambda)=\frac{\lambda^{x} e^{-\lambda}}{x!}, \quad x=0,1,2, \ldots where λ\lambda is the rate parameter of the Poisson distribution. (a) Write the likelihood function L(λ)L(\lambda) for the sample X1,X2,,XnX_{1}, X_{2}, \ldots, X_{n}. (b) Derive the log-likelihood function (λ)=lnL(λ)\ell(\lambda)=\ln L(\lambda). (c) Find the Maximum Likelihood Estimator (MLE) for λ\lambda by solving e(λ)λ=\frac{\partial e(\lambda)}{\partial \lambda}= 0 . (d) Verify that the second derivative of the log-likelihood function at the MLE is negative, confirming that the MLE is indeed a maximum. (e) Find the Fisher information for λ,I(λ)=E[2(λ)λ2]\lambda, I(\lambda)=-E\left[\frac{\partial^{2} \ell(\lambda)}{\partial \lambda^{2}}\right]. (f) Using the MLE and Fisher information, calculate the Cramer-Rao lower bound for the variance of the MLE.

See Solution

Problem 10209

The mgf of a random variable XX is given by m(t)=(0,9+0.1et)3m(t)=\left(0,9+0.1 e^{t}\right)^{3}, then p(X=1)p(X=1) is equal to a. 0.0243 b. 0.536 c. 0.027 d. 0.725 e. 0.9

See Solution

Problem 10210

Marked out of 1.00
The moment generating function of a random variable X is given by m(t)=0.3et+0.4+0.3e2tm(t)=0.3 e^{-t}+0.4+0.3 e^{2 t}. Then the mean of X is given by a. 0.4 b. 0.3 c. 0.9 d. 1 e. 2.4

See Solution

Problem 10211

Find the interval(s) where the car moves left for s(t)=t3+6t2+36t+4s(t)=-t^{3}+6 t^{2}+36 t+4 with t0t \geq 0.

See Solution

Problem 10212

Find the ball's velocity when it first reaches 880ft880 \mathrm{ft}, given s(t)=16t2+256ts(t)=-16 t^{2}+256 t.

See Solution

Problem 10213

f(x)=xexxf(x)=x e^{x}-x is concave up ou?

See Solution

Problem 10214

8. If f(x)={x2+3f(x)=\left\{x^{2}+3\right. (A) a=1,b=3a=1, b=3 (B) 17\frac{1}{7} (C) 13\frac{1}{3} (D) 13\frac{1}{3} (B) a=x<03,b=0}\left.a=\begin{array}{c}x<0 \\ 3, b=0\end{array}\right\} and f(x)f(x) is differentiable at x=0x=0, then: (C) a=3,b=1a=3, b=1 (D) a=0,b=3a=0, b=3  (A) x=ln2 (B) x=ln5 (C) x=ln3\begin{array}{lll}\text { (A) } x=\ln 2 & \text { (B) } x=\ln 5 & \text { (C) } x=\ln 3\end{array} (D) x=2ln5x=2 \ln 5

See Solution

Problem 10215

- A është vlerësues i pazhvendosur? Pse? 5.24. Shqyrtojmë shpërndarjen eksponenciale të zhvendosur me densitet f(x)=λeλ(xs)f(x)=\lambda e^{-\lambda(x-s)} kuX5k u X \geq 5. Gjeni me anë të metodës së përgjasisë maksimale një vlerësues për λ\lambda ?

See Solution

Problem 10216

B) If the function f(x)=ax33x2+bx+cf(x)=a x^{3}-3 x^{2}+b x+c has a local minimum at -5 and a local maximum at x=12x=\frac{-1}{2} and inflection point at x=14x=\frac{1}{4} find a,b,cRa, b, c \in R.

See Solution

Problem 10217

Q3: A) Let M be a point moving on the curve y2=x3y^{2}=x^{3} such that rate of change the point MM getting away from of the origin point is 4 unit /s/ \mathrm{s}. Find the rate of chang of the x -coordinate for M when x=2x=2

See Solution

Problem 10218

Find the ball's velocity when it first reaches 880ft880 \mathrm{ft}, given s(t)=16t2+256ts(t)=-16 t^{2}+256 t.

See Solution

Problem 10219

Kathryn fills a 100ft3100 \mathrm{ft}^{3} container with sand at 1.25ft3/min1.25 \mathrm{ft}^{3} / \mathrm{min}. Find V(t)V(t) and its domain.

See Solution

Problem 10220

Find the car's acceleration at t=2t=2 seconds given s(t)=2t410t35t2+9s(t)=2 t^{4}-10 t^{3}-5 t^{2}+9. Answer in m/s2\mathrm{m} / \mathrm{s}^{2}.

See Solution

Problem 10221

Find the car's acceleration at t=2t=2 seconds, given s(t)=2t49t36t28s(t)=2 t^{4}-9 t^{3}-6 t^{2}-8.

See Solution

Problem 10222

Kathryn fills a 100ft3100 \mathrm{ft}^{3} container with sand at 1.25ft3/min1.25 \mathrm{ft}^{3}/\mathrm{min}. Find V(t)V(t) for t[0,4800]t \in [0,4800]. Domain: [0,80][0,80], Range: ?

See Solution

Problem 10223

Find the interval(s) where the car slows down given s(t)=2t33+3t2+20t3s(t)=-\frac{2 t^{3}}{3}+3 t^{2}+20 t-3, t0t \geq 0.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord